摘要:针对现有铁路货运量预测方法存在较大突变性误差的问题,提出经济周期阶段参数的概念,将经济周期量化后作为一个输入因素提供给神经网络模型,用以学习记忆经济波动情况,建立基于经济周期的Elman神经网络预测模型,并以我国1992~2008年铁路货运量为实例对方法进行检验,与BP神经网络预测结果进行对比。实例表明,该方法有效减小突变性误差,预测精度较高,Elman
神经网络在进行动态系统预测时效果更佳。
原文链接:http://www.cqvip.com/QK/71135X/201107/35492050.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)