摘要:针对风速序列的混沌特性,提出了一种将混沌分析和神经网络相结合的短期风速直接多步预测新方法,以提高其预测精度。首先,对风速序列进行混沌特性分析和相空间重构;然后,根据重构相空间的特征参数,结合预测需求,确定Elman网络结构;最后,利用空间欧式距离选取的样本对Elman网络进行训练,建立风速直接多步预测模型。以华北地区某风电场实测风速为例进行仿真测试,结果表明与单步迭代法和直接
神经网络法相比,该文方法在进行风速直接多步预测时具有更好的整体误差指标。
原文链接:http://www.cqvip.com/QK/95586X/201106/38466278.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)