全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
577 0
2017-09-20
摘要:研究车牌字符识别问题,针对传统神经网络在车牌字符识别存在识别准确率低、效率低的问题,提出了一种基于改进神经网络的车牌字符识别方法。该方法首先采用Gabor滤波器提取车牌字符的特征,PCA降维处理消除车牌字符特征之间的冗余信息,然后采用改进的神经网络对提取特征进行训练得到最优识别模型,最后利用最优模型对车牌字符进行识别。仿真实验表明,数字及字母的识别准确率达95.0%以上,汉字的识别准确率达93.1%,与传统识别方法相比,识别准确率和识别速度都有了较大的改进,该方法在车牌识别的应用有着广泛的前景。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=35224626

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群