摘要:针对传统逻辑漏钢预测系统稳定性差、收敛速度慢、收敛精度低等缺点,建立具有自组织、自学习等功能的误差反向传播BP神经网络预测模型.采用变步长并加入动量项、防振荡项等方法,使网络训练过程能够跳出局部极小,加快了收敛速度.系统改变以往只将温度数据作为输入参数的传统,将拉速、中间包钢水温度作为考虑因素,扩大了漏钢因素的考虑范围.实验结果表明,采用BP
神经网络对某炼钢厂实际数据进行漏钢预测,预报结果准确,具有较好的在线应用前景.
原文链接:http://www.cqvip.com/QK/91549X/201003/33312762.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)