全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
660 0
2017-09-20
摘要:提出一种基于广义回归神经网络的电离层电子总合量建模的新方法。依据电子总合量的时空变化特性建立基于广义回归神经网络的区域电子总含量模型。结合实例,详细讨论训练样本的采样策略对网络模型性能的影响,并确定较优的模型光滑参数和采样策略。分别从理论和实例上与常用的多项式模型进行对比分析。结果表明在数据样本密集区域两者的精度相当,而在外推的空白区域内网络模型的精度优于多项式模型,验证网络模型的可行性和有效性。

原文链接:http://www.cqvip.com/QK/90069X/201001/32996301.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群