摘要:结合领域专家的经验知识,根据提升机制动系统故障树,完成了故障样本的收集与设计,然后用自组织特征映射(SOM)网络对制动系统的7种故障自动进行了分类,成功实现了第一层次的诊断;总结了制动系统子系统一液压站故障树,进行故障样本的收集与设计,然后用BP网络、BP网络状态分类器和Elman网络对液压站故障进行了第二层次的诊断,确定了故障原因和程度.对液压站故障的测试结果表明,这3种网络最后的结构和智能算法trainlm、输入、输出均能满足故障诊断与预测的要求;Elman网络的诊断性能较稳定,其隐含层神经元数对诊断性能的影响较小;故障测试精度由高到低依次是BP网络状态分类器、BP网络、Elman网络.
原文链接:http://www.cqvip.com/Main/Detail.aspx?id=33406106
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)