摘要:针对径向基函数(RBF)神经网络构造时其结构和参数难以确定的问题,结合可拓理论对输入样本和基函数的中心向量建立物元模型,并借鉴第2类型可拓神经网络(ENN2)的聚类思想,根据样本分布,采用可拓分析及可拓变换动态调整隐节点数目和基函数中心,从而提出基于可拓理论的RBF(ERBF)
神经网络.同时,通过UCI标准数据集进行了测试,并通过应用实例进行了验证,结果表明,ERBF结构和参数的确定方法简单、收敛速度快,且泛化精度、鲁棒性和稳定性均显著提高.
原文链接:http://www.cqvip.com/QK/91549X/201111/39786002.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)