摘要:在径向基(RBF)神经网络和C-均值聚类算法的基础上,提出一种适用于电能质量复合扰动分类的多标签排位分类算法—多标签径向基函数法(ML-RBF)。首先,对常见的电能质量扰动及其组合而成的复合扰动进行离散小波分解,提取各层分解系数的规范能量熵作为特征向量;然后采用C-均值聚类算法将所得的特征向量映射为RBF神经网络的输入;最后通过RBF
神经网络对该电能质量复合扰动类型进行预测。仿真实验结果表明,在不同的噪声条件下,ML-RBF可以有效分类识别电能质量复合扰动。
原文链接:http://www.cqvip.com/QK/94183X/201108/39154588.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)