摘要:余氯浓度是衡量供水管网水质的一个重要指标,采用混沌理论、模型校正等传统方法不能准确反映余氯浓度变化规律。根据RBF神经网络快速收敛和全局优化的特点,基于时间序列法,建立RBF神经网络余氯浓度预测模型。采用Matlab中的Newrbe函数进行函数逼近,结合某管网水质模拟控制系统提供的样本数据进行仿真计算,最终获得的余氯浓度预测值和实测值十分吻合。结果表明:RBF
神经网络预测模型具有一定的工程实用价值。
原文链接:http://www.cqvip.com/QK/90353A/201208/42828518.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)