全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
625 0
2017-09-21
摘要:能源是人类赖以生存的物质基础,有效地预测能源需求对于经济的发展和社会的进步具有重要意义。BP神经网络预测模型具有自学习、自适应的特点,适用于难于建立精确数学模型的系统,但是传统的BP网络在学习过程中易发生震荡,且收敛缓慢。文章通过加入动量项改进了传统的BP神经网络,综合考虑了影响中国能源需求的各个因素,并选取了主要且可量化的因素:国民生产总值(GDP)、城镇人口比例、产业结构、能源价格、能源结构、技术进步、消费水平。应用改进的BP神经网络算法,结合1990到2007的各项实际数据,建立了中国能源需求预测模型,并用MATLAB仿真实现,仿真结果表明该预测模型具有较强的预测能力和较好的实用价值,最后用该模型对中国未来3年的能源需求进行了预测。

原文链接:http://www.cqvip.com/QK/96461A/2010S2/1002329029.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群