摘要:将二维相关近红外谱参数化方法与BP神经网络结合,建立掺杂牛奶与纯牛奶的判别模型。分别配制含有尿素牛奶(1~20g·L^-1)和三聚氰胺牛奶(O.01~3g·L^-1)样品各40个。研究了纯牛奶、掺杂牛奶的二维相关近红外谱特性,在此基础上,分别提取了各样品二维相关同步谱的5个特征参数。将这5个特征参数作为BP神经网络的输入,分别建立掺杂尿素、掺杂三聚氰胺、两种掺杂牛奶与纯牛奶的判别模型,采用这些模型对未知样品进行预测,其预测正确率分别为95%,100%和96.7%。研究结果表明:该方法有效地提取了牛奶中掺杂目标物的特征光谱信息,同时又减少了BP
神经网络输入变量的维数,实现了掺杂牛奶与纯牛奶的鉴别。
原文链接:http://www.cqvip.com/QK/90993X/201311/47535767.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)