摘要:交通流预测已成为智能交通的重要组成部分,针对短时交通流的非线性和不确定性,文中根据实际交通流中存在的混沌,利用C—C方法和小数据量法对交通流混沌进行了分析,在交通流混沌时间序列相空间重构的基础上构建了基于粒子群优化
神经网络的单点单步预测模型.运用该模型对实际采集的美国加州城市快速路交通流数据进行了仿真研究,结果表明,该预测模型具有较高的预测精度,能够满足智能交通控制和诱导的需求。
原文链接:http://www.cqvip.com/Main/Detail.aspx?id=33072790
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)