摘要:基于卷积神经网络和深度信念网络各自的优点,通过把卷积神经网络的局部感受野引入到深度信念网络的单层中,把深度信念网络的单层分成多个子RBM,提出一种改进的深度信念网络。分别用BP网络、卷积神经网络、深度信念网络和改进的深度信念网络对模型MNIST和Cifar-10数据库进行小图像分类识别实验;根据实验结果,改进的深度信念网络在Cifar-10库上错误率为30.16%,比卷积神经网络低了9%,比传统的深度信念网络低了40%;在MNIST上的识别错误率为1.21%,比传统的深度信念网络分别降低了16%,略高于卷积
神经网络。试验结果表明改进的DBN网络在小图像分类应用中是有效的。
原文链接:http://www.cqvip.com/QK/90976X/201404/49689121.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)