全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
706 0
2017-09-22
摘要:针对传统神经网络的网络初始权值和阈值随机给出,训练结果易陷入局部极小值的问题,本文提出一种采用遗传算法(GA)对BP网络的初始权值和初始阈值进行优化的方法.通过模拟生物进化中的自然选择和遗传机理,首先将网络的初始权值和初始阈值表示为染色体基因编码,再利用遗传算子进行组合交叉、变异、选择,产生出新的染色体来完成初始参数优化,形成初始权值和初始阈值,最后经BP网络训练得到最终权值和阈值,建立用于短期发电量预测的网络.实验结果表明,与传统BP神经网络预测方法相比,该预测方法精度更高,为短期电量预测提供了一种新途径.

原文链接:http://www.cqvip.com/QK/94747A/201704/672578860.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群