全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
754 0
2017-09-24
摘要:术语和惯用短语可以体现文本特征。无监督的抽取特征词语对诸多自然语言处理工作起到支持作用。该文提出了"聚类-验证"过程,使用主题模型对文本中的字符进行聚类,并采用自然标注信息对提取出的字符串进行验证和过滤,从而实现了从未分词领域语料中无监督获得词语表的方法。通过优化和过滤,我们可以进一步获得了富含有术语信息和特征短语的高置信度特征词表。在对计算机科学等六类不同领域语料的实验中,该方法抽取的特征词表具有较好的文体区分度和领域区分度。

原文链接:http://www.cqvip.com/QK/96983X/201506/668018121.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群