摘要:为了提高超短期风电功率预测精度,使用改进的小波-BP神经网络方法进行研究。针对预测模型普遍存在的延时问题,先通过离散小波变换将信号分解为高低频段的信号,再用遗传算法优化的BP神经网络分别进行建模,最后求和各层预测信号。由于功率和风速具有混沌特性,用C-C法联合优化重构相空间的参数,以嵌入维数为神经网络输入层节点数。应用于山东某风电场,仿真结果表明,与BP
神经网络模型相比,该算法预测风速和功率精度较高,但风速预测值经过实际功率曲线转换后,功率预测精度变差。
原文链接:http://www.cqvip.com/QK/90494X/201415/661726909.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)