摘要:提出了一种基于粗神经网络(roughmembershipneuralnetwork,RMNN)的高压输电线路故障分类方法,用10个独立的粗神经网络来分类识别输电线路的10种故障类型。粗神经网络利用粗神经元和模糊神经元代替普通神经元,有效地提高了
神经网络的训练速度,并能减少网络的训练样本。基于对大量故障数据的分析,综合利用故障发生后5ms内故障电流时域和时频域的13种不同特征量作为故障分类的依据,以提高故障分类的正确率。PSCAD/EMTDC仿真实验结果表明:该故障分类方法能快速准确地分类识别各类故障,并且不易受故障时刻、过渡电阻、故障位置等因素的影响,具有较好的适应性。
原文链接:http://www.cqvip.com/QK/71135X/201107/35393833.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)