全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
511 0
2017-09-25
摘要:交通流量预测是当前交通大数据应用的重要议题之一.经典的交通流量预测方法通常只根据被预测道路自身的数据进行分析和决策,而往往较少考虑由于同一区域不同道路之间的交通流量关联性.本研究根据城市核心区交通流量数据的特点,构建同区域内多条相关道路的交通流量多维度数据模型.并且,基于该数据模型提出了一种基于多机器学习竞争策略的交通流量预报算法.该算法的主要核心思想是利用时间序列聚类的方式将多维交通流量数据进行降维,然后通过引入多种多机器学习方法进行并发训练,其训练结果通过竞争获得最优分类器群.最后设计了多最优机器学习集成预测方法进行交通流量预测.本模型通过在南昌市中心道路进行的实验显示,其预测结果优于传统单时间序列机器学习方法.

原文链接:http://www.cqvip.com/QK/85358X/201604/669854180.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群