摘要:建立了压电工作台的神经网络在线辨识模型并设计了相应的自适应控制器以抑制压电工作台迟滞特性、蠕变特性及动态特性对其微定位精度的影响。采用双Sigmoid激活函数对神经网络激活函数进行了改进,同时分析了改进激活函数的神经网络模型与PI迟滞模型在迟滞建模上的异同。设计了基于改进激活函数的3层BP神经网络作为压电工作台的在线辨识模型,推导了网络权值、阈值及激活函数阈值修正公式。最后,基于神经网络模型设计了压电工作台的自适应控制方案,该控制方案利用另外一个神经网络来完成对PID控制器参数的自适应调整。实验结果表明:提出的
神经网络在线辨识模型平均误差为0.095μm,最大误差为0.32μm;自适应控制方案跟踪三角波的平均误差为0.070μm,最大误差为0.100μm;跟踪复频波的平均误差为0.80 μm,最大误差为0.105 μm。实验数据显示压电工作台的定位精度得到了有效提高。
原文链接:http://www.cqvip.com/QK/92835A/201203/41117724.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)