全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
831 0
2017-09-21
摘要:研究现代智能交通管理中的车牌准确识别问题。由于车牌图像存在模糊不清、倾斜,分割后字符图像笔画粗细不均、断续不完整等特殊性,导致传统车牌识别算法识别速度慢、识别正确率低,不能适应车牌识别的实时性要求。为了提高车牌识别正确率,提出一种BP神经网络的车牌识别算法。该算法首先对车牌字符图像进行归一化处理,消除图像中无用信息,然后对车牌字符进行特征提取,消除笔画粗细不均、断续不完整等影响,再将提取车牌字符特征输入到BP神经网络进行学习和识别,并采用动量因子和自适应学习速率对BP神经网络进行改进,加快其收敛速度,从而提高识别的实时性。仿真结果表明,改进用BP神经网络提高了车牌识别正确率和识别速度,缩短了识别时间,适合于实时性强的智能交通管理系统应用。

原文链接:http://www.cqvip.com/QK/92897X/201108/38888183.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群