全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
839 0
2017-09-25
摘要:通用信息模型(CIM)是工业界的一种公开标准,并已实现于很多产品中,大量的bug被发现和修复。为了减少了人工查找错误根源所需的时间和精力,提出一种基于自然语言处理的方法对CIM的bug进行自动调试。首先使用最大熵模型对已解决bug的文档描述进行分词,然后基于构建的词典使用simHash找出那些重复性很大的已修复的bug,最后使用文档处理的方法分析客户提供的trace找出问题所在和解决方法。实验结果取得了87.5%准确率,表明了该方法的有效性。

原文链接:http://www.cqvip.com/QK/94832X/201305/45536090.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群