全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
715 0
2017-09-25
摘要:O3是近地面大气中一种重要的二次污染物.本研究采用神经网络多层感知器(Multi-Layer Perceptron)和多元线性回归2种模型,以广州万顷沙站2006年的气象观测数据为输入,对该站O3的1 h平均峰值浓度进行提前1 d的预测,并比较了2种模型的预测效果.模型的输入参数为前1d O3的最高1h平均浓度和第二天的气象参数(温度、湿度、风速、风向、气压和光照).为了降低神经网络的复杂度以提高模型的泛化能力,采用了OBS(Optimal brain surgeon)方法对神经网络模型进行了修剪.结果表明,经过修剪后的神经网络预测结果的准确指数(agreement index)为92.3%,RMSE为0.042 8 mg/m3,R-square为0.737,重污染事件(1 d中O3峰值浓度超过0.20 mg/m3)的预报准确率为77.0%.为了进一步提高重污染事件发生概率大小的预报效果,采用了神经网络分类器对臭氧的污染级别进行预测,该处理后重污染事件预报准确率可以达到83.6%.综合比较神经网络模型和多元线性回归模型的拟合效果后发现,神经网络模型在O3峰值预报中具有明显优势,本研究建立的神经网络模型具有臭氧污染预测预警的实用价值.

原文链接:http://www.cqvip.com/QK/91181X/201108/38659871.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群