全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
663 0
2017-09-25
摘要:高效而精确的湿地遥感分类是大范围湿地资源动态监测与管理的必要保障。使用ETM+遥感数据,借助Matlab神经网络工具箱,构建了基于BP神经网络的滨海湿地覆被分类模型,并将其应用于江苏盐城沿海湿地珍禽国家级自然保护区的核心区的自然湿地覆被分类研究中。选择3、4、7、8波段作为输入层变量,单隐藏层设为10个节点,输出层变量对应待划分的8种覆被类型,构建三层式BP神经网络滨海湿地覆被分类模型。结果显示,BP分类总精度为85.91%,Kappa系数为0.8328,与最小距离法和极大似然法的分类总精度相比,分别提高了7.99%和6.08%,Kappa系数也相比提高。研究结果表明,BP神经网络分类法是一种较为有效的湿地遥感影像分类技术,能够提高分类精度。

原文链接:http://www.cqvip.com/QK/90772X/201323/48136883.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群