摘要:针对传统方法难以对性能参数进行有效预测的问题,提出一种基于过程神经网络的性能参数预测方法。为解决反向传播学习算法收敛速度慢、易陷于局部极小点等问题,开发了一种基于正交基函数展开的Leven-berg-Marquardt学习算法。为提高过程
神经网络的泛化能力,从提高训练样本的质量和规模入手,研究了实际测量数据的预处理方法,并提出一种基于样条函数拟合和相空间重构理论的训练样本集构造方法。最后,将该方法用于某型航空发动机性能参数的预测,获得了满意的结果。
原文链接:http://www.cqvip.com/QK/97749X/201101/36760347.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)