全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
526 0
2017-09-25
摘要:以设计最小径向基函数(RBF)神经网络结构为着眼点,提出一种在线RBF网络结构设计算法.该算法将在线减法聚类能实时跟踪工况的特性与RBF网络参数学习过程相结合,使得网络既能在线适应实时对象的变化又能维持紧凑的结构,有效地解决了RBF神经网络结构自组织问题.该算法只调整欧氏距离距实时工况最近的核函数,大大提高了网络的学习速度.通过对典型非线性函数逼近和混沌时间序列预测的仿真,表明所提出的算法具有良好的动态特性响应能力和逼近能力.

原文链接:http://www.cqvip.com/QK/91549X/201207/42503903.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群