全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
554 0
2017-09-25
摘要:采用静态迈克尔逊干涉仪对待测目标进行光谱识别,在空间干涉长度不变的条件下,应用BP神经网络算法对混合光谱分离过程进行优化,从而达到提高伪装目标识别概率的目的。由干涉仪及线阵CCD记录视场内所有位置上的光谱信息,构成混合光谱数据集合,以已知材料的标准吸收光谱作为隐含层的规则依据,将BP神经网络应用于混合光谱的分离。实验采用不同距离、不同背景组合的混合光谱作为初始数据,以1.5 m×1.5 m钢板做成四种待测目标,由静态迈克尔逊干涉仪得到混合光谱,BP神经网络算法与传统光谱吸收算法对无伪装目标的识别率都在90%以上,对具有伪装效果的待测目标识别概率分别为75.5%和31.7%,所以采用BP神经网络可有效地提高伪装目标的识别概率。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=35992626

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群