全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
697 0
2017-09-26
摘要:离群数据挖掘是为了找出隐含在海量数据中相对稀疏而孤立的异常数据模式,但传统的离群数据挖掘方法受人为因素影响较大.通过引人基于信息熵的离群度量因子,给出一种离群数据挖掘新算法.该算法先利用信息熵计算每个数据对象的离群度量因子,然后通过离群度量因子来衡量每个对象的离群程度,进而检测离群数据,有效地消除了人为主观因素对离群检测的影响,并能很好地解释离群点的含义.最后,采用UCI和恒星光谱数据作为实验数据,通过对实验的分析,验证了该算法的可行性和有效性.

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=33744162

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群