摘要:分类是机器学习领域最重要的一类问题,其中K近邻法和Logistic回归是两个重要的机器学习算法。本文主要研究了K近邻算法和Logistic回归模型在数据分类问题中的具体应用。针对K近邻算法,在考虑数据特征基础上,分别用欧氏距离和曼哈顿距离作为距离度量,同时,对于Logistic回归分类问题,提出了一种改进的随机梯度上升算法。通过选取了UCI
机器学习数据集中的Horse Colic、Wine Quality两个数据集对算法进行验证,应用结果表明:K近邻算法中使用欧氏距离更适合Wine Quality,并且改进的随机梯度上升算法显著提高了Logistic学习机器的训练时间,说明了K近邻法和改进Logistic回归分类算法具有良好的分类效果。
原文链接:http://www.cqvip.com/QK/88914X/201603/669980323.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)