摘要:行人再识别中,为了获得基于突出性颜色名称的颜色描述(SCNCD)特征对于光照变化较好的鲁棒性,提出了融合SCNCD特征和对于视角变化鲁棒性高的局部最大出现概率(LOMO)表观特征;为了获得图像的结构信息,将图像划分为多个重叠块,并提取块特征;针对神经网络容易陷入局部极小值,且收敛速度慢的问题,引入动量项.经过公用VIPeR数据库和PRID450s数据测试后,实验结果表明:融合后的特征的识别能力明显高于原特征的识别能力,且改进后的
神经网络收敛速度明显提高.
原文链接:http://d.wanfangdata.com.cn/Periodical/cgqjs201708035
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)