摘要:渗流压力是反映大坝工作状态的重要物理量,对渗流压力进行预测分析可以及时了解大坝渗流状况和趋势.为克服标准BP算法收敛速度慢、泛化能力弱和计算量大等不足,引入LM算法优化标准BP神经网络的权值和阈值,提高BP神经网络对土石坝渗流压力的预测效果.根据渗流分析,给出了渗流压力的统计模型,由统计模型选取上下游水位、降雨和时效作为神经网络输入层因子,以渗流压力作为输出层因子,建立了3层LMBP神经网络大坝渗流压力预测模型.利用MATLAB进行了多组仿真试验,确定了使本次渗流压力预测效果更好的训练样本数据量区间.以渗流压力实测数据及同期库水位和降雨资料作为训练样本,在选取适当数据量的训练样本的基础上,运用LM算法对BP网络进行训练,利用测试样本对训练好的神经网络进行测试.将同结构的LMBP神经网络和标准BP神经网络应用于某土石坝渗流压力的预测中,应用结果表明,LMBP
神经网络收敛速度更快、拟合和预测精度更高,在土石坝渗流压力分析和预测应用方面是可行的.
原文链接:http://d.wanfangdata.com.cn/Periodical/rmhh201708020
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)