全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
1059 0
2017-09-28
摘要:以金融时间序列(1990年-2014年上证指数)为研究对象,金融时间序列数据本身带有较大的波动性,有高频和低频的数据情况贯穿于整个时间序列。小波分析对于数据降噪较于传统的降噪方式有着明显的优势,分析对比小波变换在处理两种不同波频情况下的优势和方法。采用其适合小波分析和神经网络相结合的组合模型对其进行分析和预测,其思想是,先将时间序列进行小波分解,得到各级小波变换序列和尺度变换序列。根据不同级小波变换系数的情况,选择合适的神经网络训练函数建立预测模型,得到各级小波变换序列和最后一层尺度序列,运用小波重建技术得出原时间序列的预测值。最后和常规的BP神经网络比较预测效果。

原文链接:http://www.cqvip.com/QK/91119X/201713/672653347.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群