摘要:目前越来越多的数据挖掘方法被用于风险预警中,决策树、支持向量机、神经网络、Logistic回归等方法在风险预警中都表现出了较好的特性和预警效果,但是不同数据挖掘分类方法得到的结果不同,往往导致预警结果的不一致,因此也会存在一定风险。本文引入信息融合技术对不同数据挖掘分类方法得到的结果进行融合处理得到最优的结果,解决了不同数据挖掘方法得到的结果不一致问题。文章在SVM和Logistic回归的数据挖掘模型基础上建立基于信息融合的公司财务预警模型,提高了财务预警准确率,并且保留了原数据挖掘方法在分类预测上的优势。在实证研究中,论文选取了中国制造业的上市公司作为研究对象,在SVM和Logistic回归两种数据挖掘模型的基础上利用信息融合方法建立了财务预警模型,实证结果表明,基于信息融合的
数据挖掘方法的预测准确率要高于单独的SVM和Logistic回归两种方法。
原文链接:http://www.cqvip.com/QK/95764A/201510/666621257.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)