let A1,A2....An be a partition of S, which means A1UA2U....An=S, if A1,A2....An belong to sigma algebra, then A1UA2U...UAn=S belong to; then if S belong to sigma, then S的补也属于,S的补是空集,所以空集也属于
第二题是定理1.2.4,let Ai be a partition of S, A1UA2...UAi=S P(UAi)=sum(PAi)=P(S)=1,空集是S的补集,根据定理1.2.8 P(A)=1-P(A的补),所以P(空集)=1-P(S)=1-1=0
第三题是定理1.2.9,P(BnA补)=P(B)-P(BnA)>=0, since A belong to B, so P(AnB)=P(A), P(BnA补)=P(B)-P(A)>=0 得证