摘要:为解决模糊学习矢量量化(FLVQ)对噪声数据敏感问题,在无监督可能模糊聚类(UPFC)基础上提出一种无监督可能模糊学习矢量量化(UPFLVQ)算法.UPFLVQ用UPFC的隶属度和典型值来更新学习矢量量化网络的学习速率,计算类中心矢量.UPFLVQ属于无监督
机器学习算法,适用于无学习样本情况下的样本分类.研究了UPFLVQ用于近红外光谱生菜品种鉴别的可行性.采用FieldSpec@3型便携式光谱分析仪获取波长范围为350~2 500 nm的三种生菜样本的短波近红外光谱和长波近红外光谱,然后采用主成分分析(PCA)进行近红外光谱的维数压缩,取前三个主成分,累计可信度达97.50%,将2151维的近红外光谱压缩为三维数据.再运行模糊C-均值聚类(FCM)至迭代终止,并以FCM的类中心作为UPFLVQ的初始聚类中心,最后运行UPFLVQ得到隶属度和典型值以实现近红外光谱的生菜品种鉴别.同时,运行UPFC进行近红外光谱的生菜品种鉴别.实验结果表明:UPFLVQ和近红外光谱技术相结合的模型具有检测速度快,鉴别准确率高,对生菜不造成损坏等优点,可实现不同品种生菜的鉴别.UPFLVQ是将UPFC和FLVQ相结合的聚类算法,利用UPFLVQ建立近红外光谱的生菜品种鉴别模型时无需学习样本,适用于线性可分的数据聚类,为快速和无损地鉴别生菜品种提供了一种新的方法.
原文链接:http://d.wanfangdata.com.cn/Periodical/gpxygpfx201603020
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)