全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
620 0
2017-09-28
摘要:针对边坡工程是复杂的非线性系统,采用常规的理论分析和数值计算方法难以满足对边坡稳定性评价的高精度与快速性的要求,为此,提出对处理非线性复杂问题具有很好的适应性一种有概率意义的核学习机--高斯过程机器学习方法来解决边坡稳定性的合理评价问题,建立了相应的边坡稳定性预测模型.工程应用研究结果表明,采用高斯过程机器学习方法进行边坡稳定性评价是科学可行的,该方法能很好地表达边坡稳定性与各影响因素之间的非线性映射关系,能方便快捷地给出合理可靠且具有概率意义的边坡稳定状态评价结果,为实现边坡快速设计的工程实践要求提供了一条新的途径.

原文链接:http://d.wanfangdata.com.cn/Periodical/ytlx200903018

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群