摘要:为在开放网络环境中建立资源消费者(用户)和资源提供者(主机)之间的信任关系,提出基于机器学习的动态信誉评估模型 .模型中用户的信誉级别可以根据其行为和一些其他监测数据动态变化,而资源的信誉级别也可以根据用户对资源所提供服务的评价动态变化 .给出了用于生成评估规则和信誉级别的模糊信誉级别评估算法(FTEA),算法采用基于规则的
机器学习方法,具有从大量输入数据中自学习以获取评估规则的能力 .实验结果表明,1000组输入数据能够生成理想的规则库,并且算法执行时间随输入判定因素数目成指数形式增长,因此需要选择5~6个因素和1000个左右的样本数据以进行系统实现 .
原文链接:http://d.wanfangdata.com.cn/Periodical/jsjyjyfz200702005
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)