摘要:提出一种综合使用前向选择(forward selection,FS)和K-means聚类以及径向基函数(radical basis function,RBF)神经网络的光伏发电功率预测方法.模型以每小时的气象因素作为输入量,首先采用前向选择法对原始多维输入量进行约减,在降低维数的基础上减小各个变量间的耦合现象.再通过K-means聚类方法对样本进行聚类,继而对各类数据建立不同的RBF预测模型,避免单神经网络的过拟合问题.实验结果表明,相比于传统的
神经网络预测模型,该文使用的模型输入变量更少,预测精度更高.
原文链接:http://d.wanfangdata.com.cn/Periodical/tynxb201703022
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)