全部版块 我的主页
论坛 金融投资论坛 六区 金融学(理论版) 量化投资
1440 1
2017-09-29
导语:本周精选1篇关于应用深度学习构造投资组合的文章,本文通过深度学习来模仿交易员观察K线图的方式做出交易决策为出发点。此文颇有创新:利用无监督卷积自动编码器对K线图进行特征提取;使用模块度优化(modularity optimisation)算法对股票进行聚类分析;选取每个聚类中夏普比率最高的股票,构造投资组合。本文对于理解深度学习如何进行量化投资颇有帮助,值得一读。BigQuant拥有海量的数据和主流开源AI框架,赋能每一位爱好机器学习/深度学习和量化交易的人。

《深度股票表征学习:从K线图到交易决策》

原文:《Deep Stock Representation Learning:From Candlestick Charts to Investment Decisions》


作者: Guosheng Hu, Yuxin Hu, Kai Yang, Zehao Yu, Flood Sung, Zhihong Zhang, Fei Xie, Jianguo Liu, Neil Robertson,  Timothy Hospedales, Qiangwei Miemie


关键词:深度学习,卷积自编码,聚类分析


不同于许多算法策略基于原始时间序列数据进行分析,本文介绍一种基于深度学习的算法能够像交易员观察K线图那样,从K线图中捕捉股价变动信息,然后做出交易决策。


研究背景:


现有算法策略构造投资组合的方式是以原始时间序列数据作为输入,采用时间序列的分析方式。但交易员的典型做法为:肉眼观察K线图然后做出交易决策。本文研究目标为:使用深度学习来模仿交易员观察历史数据的方式,构造投资组合。


实现方式:


投资决策流程包含三部分:深度特征学习,聚类分析和投资组合构造。


深度特征学习:将4维股票原始历史价格数据转换为标准K线图。将生成的K线图输入到卷积自动编码网络(一种非监督的深度学习方法),进行图像特征学习。由于深度学习的强大非线性建模能力,学习到的512维特征可以有效地抓住股价的变动以及其他相关的抽象信息。512维的特征将代替传统的时间序列进行建模。


1.jpg


聚类分析:使用模块度优化(modularity optimisation)算法对学习到的特征进行聚类,完成市场细分。


构造投资组合:选用每个聚类中夏普比率最高的股票。


实现流程如下图:

2.png


首先对包含高开低收行情数据的行情数据进行K线绘制,然后运用卷积自动编码技术将其转换为512维的特征向量,接着对其进行聚类,最后找出每个类别中夏普比率最高的股票构建投资组合。


试验结果


试验采用富时100指数包含股票作为基准,时间跨度为:2000年1月4日到2017年5月14日。


本文策略试验结果如下:

  • 自动编码过程能有效地提取图像特征
  • 聚类分析准确地分类了不同价格变化特征的股票。

量化评估采用7个指标衡量:总收益、每日夏普比率,最大回撤,平均日收益,平均月收益,年化收益,获利年份比例。


与富时100指数比较:在长期交易时间内,或者较短时间内的震荡、平稳和牛市行情中,策略表现优于富时100指数。


与基金相比较:与市场上知名的公募基金相比,总收益率、平均日收益、平均月收益和年化收益等指标超过公募基金,证明了策略可盈利性;每日夏普比率最高,证明了策略很好地平衡了收益和风险;最大回测值第二低,证明策略能够管理投资风险;在62.5%的年份里策略可以创造盈利,证明策略的稳定性。


结论


本文提出一种基于深度学习的投资策略:

  • 使用非监督卷积自编码网络,对K线图进行表征学习;
  • 使用模块度优化(modularity optimisation)算法对股票进行分组;
  • 选取每个组中夏普比率最高的股票构造投资组合。

试验结果表明:

  • 提取的股票特征可以获取图片中包含的信息;
  • 投资组合总收益率超过富时100指数和许多知名公募基金,同时具有更好的稳定性和更低的风险。


特别鸣谢原文作者:Guosheng Hu 先生对本文的指导。




量化研究每周精选》每周一期,为大家提精选研报、前沿研究、热门文章等优质内容。
查看所有 量化研究每周精选,欢迎访问www.bigquant.com。


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-9-29 11:26:15
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群