全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
652 0
2017-10-27
摘要:基于SVM(support vector machine)理论的分类算法,由于其完善的理论基础和良好的试验结果,目前已逐渐引起国内外研究者的关注.深入分析了SVM理论中SV(support vector,支持向量)集的特点,给出一种简单的SVM增量学习算法.在此基础上,进一步提出了一种基于遗忘因子α的SVM增量学习改进算法α-ISVM.该算法通过在增量学习中逐步积累样本的空间分布知识,使得对样本进行有选择地遗忘成为可能.理论分析和实验结果表明,该算法能在保证分类精度的同时,有效地提高训练速度并降低存储空间的占用.

原文链接:http://www.cqvip.com//QK/96857X/200112/5827148.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群