摘要:现实应用中常常涉及许多连续的数值属性,而且前许多
机器学习算法则要求所处理的属性取离散值,根据在对数值属性的离散化过程中,是否考虑相关类别属性的值,离散化算法可分为有监督算法和无监督算法两类。基于混合概率模型,该文提出了一种理论严格的无监督离散化算法,它能够在无先验知识,无类别是属性的前提下,将数值属性的值域划分为若干子区间,再通过贝叶斯信息准则自动地寻求最佳的子区间数目和区间划分方法。
原文链接:http://www.cqvip.com//QK/90818X/200202/5973842.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)