全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
511 0
2017-10-28
摘要:作者主题模型被广泛应用于科技文献中作者的兴趣发现。针对作者主题模型不能利用文献的类别标签属性与主题之间的相关性进行主题发现的问题,在对作者主题模型分析的基础上,将科技文献之间固有的类别标签信息引入到作者主题模型中,提出了作者标签主题(LAT)模型。LAT模型通过实现文献的标签信息与主题之间的映射关系,实现文本的多标签判定,提升文档的聚类效果。与传统的潜在狄利克雷分配(LDA)和作者主题(AT)模型的对比实验结果表明,LAT模型能够显著提高模型的泛化能力,提升模型的运行性能。

原文链接:http://www.cqvip.com//QK/94832X/201504/664247348.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群