摘要:将支持向量机与模糊逻辑相结合,设计了一种模糊支持向量机控制器,并分析了控制器的结构和学习算法.学习过程分为离线学习支持向量机和在线整定模糊比例因子两部分.与模糊
神经网络控制器相比,模糊支持向量机控制器适应小样本学习,泛化能力强,解决了过学习、结构设计依赖经验等问题.仿真研究表明,所设计的控制器具有较优的控制性能.
原文链接:http://www.cqvip.com//QK/91549X/200505/15876728.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)