全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
688 0
2017-10-29
摘要:词语之间相似度的计算广泛应用于信息检索、文本主题抽取、文本分类、机器翻译等研究领域.词语之间的相似度的计算通常有两方法,基于统计的方法和基于世界知识的方法.对于中文的词语相似度计算,有人提出一种利用《知网》计算词语相似度的方法,该方法通过计算《知网》义原的相似度进而计算词语的相似度,但是该方法在计算义原相似度时没有考虑义原在层次体系树上的深度以及区域密度.在此基础之上深入研究《知网》的义原层次体系,将义原在层次体系树上的深度和区域密度两个因素添加到义原相似度计算中.最后,实现了该计算方法并得到实验结果,将实验结果与改进前的计算方法的结果比较,发现考虑义原在层次体系树上的深度和区域密度得到的结果比不考虑这两个因素得到结果更符合实际.

原文链接:http://www.cqvip.com//QK/95011X/201104/2000278002.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群