摘要:针对汽轮机故障诊断中出现的多故障识别问题,为有效提高汽轮机多故障诊断的准确率,提出了基于极限学习机的汽轮机故障诊断方法.极限学习机算法在训练时只需设置隐含层神经元个数,从而解决了如
神经网络及支持向量机等多参数选取困难的问题,有效地提高了学习机的训练速度.在确定了最优参数的基础上,将极限学习机应用于汽轮机故障诊断模型中,并将极限学习机的故障诊断结果与支持向量机的诊断结果进行对比.结果表明:基于极限学习机的多故障诊断速度及准确率均明显优于支持向量机的诊断结果,对汽轮机故障诊断的实践有非常显著的指导作用.
原文链接:http://www.cqvip.com//QK/94384X/201304/47826940.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)