摘要:针对不平衡数据学习问题,提出一种基于欠采样的分类算法。对多数类样例进行欠采样,保留位于分类边界附近的多数类样例。以AUC为优化目标,选择最恰当的邻域半径使数据达到平衡,利用欠采样后的样例训练贝叶斯分类器,并采用AUC评价分类器性能。仿真数据及UCI数据集上的实验结果表明,该算法有效
原文链接:http://www.cqvip.com//QK/95200X/201113/38631946.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)