全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
866 0
2017-09-17
摘要:对分类算法中需要解决的关键问题进行了分析; 综述了不同分类算法的思想和特性, 决策树分类算法能够很好地处理噪声数据, 但只对规模较小训练样本集有效; 贝叶斯分类算法精度高、 速度快, 错误率低, 但分类不够准确;传统的基于关联规则算法分类准确率高, 但容易受硬件内存的制约; 支持向量机算法分类准确率高、 复杂度低, 但速度慢。针对各种分类算法的缺陷, 结合其优点, 论述了当前一些速度更快、 准确率更高、 能实现更好分类效果的新算法, 如多决策树综合技术、 基于先验信息和信息增益的混合分类算法, 基于粗糙集和遗传算法的神经网络分类算法等; 对数据挖掘分类算法作了展望, 提出今后的研究重点

原文链接:http://www.cqvip.com/QK/96733A/201104/38545269.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群