全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 经管百科 爱问频道
1350 4
2009-11-09
悬赏 50 个论坛币 已解决
题干说“函数f(x)在点x=0的某个邻域内有连续的二阶导数”,于是就有lim[f(x)/x]在x趋于0时=0,为什么??

最佳答案

xwmn 查看完整内容

你的题目应该是错了吧,我见过的题目应该是:f(x)在点x=0的某一领域内有连续的二阶导数,且x→0时 limf(x)/x=0,证明f(x)=0,f'(x)=0。正确解答是:f(x)在点x=0的某一领域内有连续的二阶导数,所以该函数在x=0的某一领域内可导,所以x→0,lim[f(x)-f(0)]/x=f'(0),因为limf(x)/x=0 极限存在 而lim[f(x)-f(0)]/x的极限也存在,所以limf(0)/x=0的极限也存在 所以f(0)=0,由x→0,lim[f(x)-f(0)]/x=f'(0)=0。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-11-9 19:25:22
你的题目应该是错了吧,我见过的题目应该是:f(x)在点x=0的某一领域内有连续的二阶导数,且x→0时 limf(x)/x=0,证明f(x)=0,f'(x)=0。正确解答是:f(x)在点x=0的某一领域内有连续的二阶导数,所以该函数在x=0的某一领域内可导,所以x→0,lim[f(x)-f(0)]/x=f'(0),因为limf(x)/x=0 极限存在 而lim[f(x)-f(0)]/x的极限也存在,所以limf(0)/x=0的极限也存在 所以f(0)=0,由x→0,lim[f(x)-f(0)]/x=f'(0)=0。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-11-9 19:47:35
此题目本身错误,取f(x)=exp(x)即可验证
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-11-9 19:47:55
此题目本身错误,取f(x)=exp(x)即可验证
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-11-9 19:56:10
记得给我金币哦
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群