作者:过拟合
链接:
https://www.zhihu.com/question/26760839/answer/40337791
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Bagging对样本重采样,对每一重采样得到的子样本集训练一个模型,最后取平均。由于子样本集的相似性以及使用的是同种模型,因此各模型有近似相等的bias和variance(事实上,各模型的分布也近似相同,但不独立)。由于

,所以bagging后的bias和单个子模型的接近,一般来说不能显著降低bias。另一方面,若各子模型独立,则有

,此时可以显著降低variance。若各子模型完全相同,则

,此时不会降低variance。bagging方法得到的各子模型是有一定相关性的,属于上面两个极端状况的中间态,因此可以一定程度降低variance。为了进一步降低variance,Random forest通过随机选取变量子集做拟合的方式de-correlated了各子模型(树),使得variance进一步降低。
(用公式可以一目了然:设有i.d.的n个随机变量,方差记为

,两两变量之间的相关性为

,则

的方差为

,bagging降低的是第二项,random forest是同时降低两项。详见ESL p588公式15.1)
boosting从优化角度来看,是用forward-stagewise这种贪心法去最小化损失函数

。例如,常见的AdaBoost即等价于用这种方法最小化exponential loss:

。所谓forward-stagewise,就是在迭代的第n步,求解新的子模型f(x)及步长a(或者叫组合系数),来最小化

,这里

是前n-1步得到的子模型的和。因此boosting是在sequential地最小化损失函数,其bias自然逐步下降。但由于是采取这种sequential、adaptive的策略,各子模型之间是强相关的,于是子模型之和并不能显著降低variance。所以说boosting主要还是靠降低bias来提升预测精度。
(2017-3-8更新:此段存疑)另外,计算角度来看,两种方法都可以并行。bagging, random forest并行化方法显而意见。boosting有强力工具stochastic gradient boosting,其本质等价于sgd,并行化方法参考async sgd之类的业界常用方法即可。