全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
1815 2
2017-12-11

《近代微分几何:谱理论与等谱问题、曲率与拓扑不变量》前三章主要介绍了Riemann流形、Riemann联络、Riemann截曲率、Ricci曲率和数量曲率.详细研究了全测地、全脐点和极小子流形等重要内容,此外,还应用变分和Jacobi场讨论了测地线、极小子流形的长度、体积的极小性.在证明了Hodge分解定理之后,论述了Laplace.Be|trami算子△的特征值估计以及谱理论.进而,介绍了Riemann几何中重要的Rauch比较定理、Hessian比较定理、Laplace比较定理和体积比较定理.作为比较定理的应用,我们有著名的拓扑球面定理.这些内容视作近代微分几何必备的专业基础知识.在叙述时,我们同时采用了不变观点(映射观点、近代观点),坐标观点(古典观点)和活动标架法.无疑,对阅读文献和增强研究能力会起很大作用.书中第4、第5章是我们25年中关于特征值的估计,等谱问题、曲率与拓扑不变量等方面部分论文的汇集.它将引导读者如何去阅读文献,如何去作研究,如何作出高水平的成果。《近代微分几何:谱理论与等谱问题、曲率与拓扑不变量》可作理科大学数学系几何拓扑方向硕士生、博士生的教科书,也可作相关数学研究人员的参考书。
附件列表
s4129821.jpg

原图尺寸 2.06 KB

s4129821.jpg

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-12-11 21:01:02
感谢分享资源
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-12-12 06:43:23
支持分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群