
a=read.csv("G:\\作业\\nfl2008_fga.csv",header=T)
attach(a)
a[c(1:1039),] #展示a的1039行数据
boxplot(offscore~GOOD,data=a,main="offscore") #画出offscore与GOOD的盒状图
par(mfrow=c(2,2)) #设置画图模式为2x2的格式
boxplot(defscore~GOOD,data=a,main="defscore") #画出defscore与GOOD的盒状图
boxplot(defscore~GOOD,data=a,main="defscore") #画出defscore与GOOD的盒状图
boxplot(kickdiff~GOOD,data=a,main="kickdiff") #画出kickdiff与GOOD的盒状图
boxplot(togo~GOOD,data=a,main="homekick") #画出togo与GOOD的盒状图
par(mfrow=c(1,1)) #设置画图模式为1x1的格式
glm0.a=glm(GOOD~1,family=binomial(link=logit),data=a) #拟合logistic回归,不使用任何变量的空模型
glm1.a=glm(GOOD~offscore+defscore+kickdiff+togo)
glm1.a=glm(GOOD~offscore+defscore+kickdiff+togo,
family=binomial(link=logit),data=a)#拟合logistic回归,使用所有变量的全模型
library(car)
anova(glm0.a,glm1.a) #计算glm0.a与glm1.a的deviance